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Appendix Supplementary Text 1: Glossary 
Ambient gene expression​:  

Gene expression measurements from mRNA that does not originate from the captured            
cell, but is attributed to cells that were damaged in the experimental processing of the               
sample. The mRNA from these damaged cells leaks into the single-cell suspension and             
is captured along with viable cells in library construction. 

 
Batch correction​:  

Methods that correct for differences in gene expression arising from unwanted, technical            
perturbations related to differing environmental conditions between two or more          
measurement batches with similar cell-type and state compositions. Batch correction          
typically involves linear models. 

 
Data integration​:  

Methods that correct for batch effects between datasets that differ in their cell-type and              
state compositions. Data integration methods use non-linear approaches. 

 
Data peeking​: 

Informing data filtering or collection decisions based on the outcome of a statistical test              
with the aim of generating a statistically significant result. Data peeking boosts p-values             
artificially. 

 
Denoising​:  

See ​expression recovery​. 
 
Expression recovery​:  

Methods that aim to remove noise from the data and infer gene expression values for               
technical dropouts. 

 
Imputation​: 

See ​expression recovery​. 
 
Library construction​:  

Experimental procedure of generating barcoded cDNAs from cellular RNA in a single-cell            
suspension. Barcoded cDNAs are sequenced to obtain read data. 

 
Marker genes​:  

Genes that characterize a single-cell identity cluster. Marker genes are typically           
overexpressed in the cluster cells compared to other cells in the dataset. 

 
 

 



 
 

Pseudotime​:  
A quantity used to order cells along an inferred trajectory given a pre-defined starting              
point. Assuming the trajectory represents a biological process, pseudotime is interpreted           
as “a quantitative measure of progress through a biological process” ​(Trapnell ​et al​,             
2014)​. 
 

Summarization​: 
Dimensionality reduction methods that aim to describe a dataset in as few dimensions as              
possible without prescribing a particular number as in visualization. Summarization          
methods are used to reduce the data to its essential components thereby removing             
technical noise and biological stochasticity. 

 
Technical dropouts​: 

Zero count measurements in gene expression data although the gene is actually being             
expressed in the relevant cell. Technical dropouts occur due to sampling effects resulting             
from not every cellular RNA molecule being captured, reverse transcribed, and           
sequenced.  

 
Visualization​:  

Dimensionality reduction methods that aim to optimally describe a dataset in two or three              
components, which can be plotted to produce a visual representation of the data. 
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Appendix Supplementary Text 2: Experimental QC metrics 
The quality of a single-cell dataset determines the amount of QC that is necessary to be able to                  
perform downstream analysis. Low quality datasets can make it difficult to identify any cellular              
population. We can obtain an indication of the quality of the dataset from experimental QC               
metrics. These metrics are calculated during the processing of read data to generate count              
matrices. While there can be many indications that a dataset is of low quality, we focus on only                  
a few central quantities that are typically calculated for every dataset. We emphasize that the               
QC metric targets we set here cannot be regarded as hard thresholds as they will differ between                 
experimental techniques and biological tissue. For example, blood is easier to process than             
brain tissue and will thus result in higher experimental QC metrics. 
 
The data that are output directly from the experimental pipeline are read sequences. Each read               
consists of base calls (‘A’, ‘T’, ‘C’, or ‘G’) with an assigned quality score that reflects the                 
uncertainty in the call. Read pre-processing involves trimming of read sequences to filter out              
any uncertain calls, leaving high quality reads. A popular quality metric for sequencing is the               
percentage of base calls that have a quality score of over 30 (Q30 score). This metric is plotted                  
over position in the read to discern barcode reads (cellular barcode + UMI) and biological reads                
(the mRNA sequence). Datasets that have poor Q30 scores in the barcode read will not be able                 
to be assigned to a cell and are thus filtered out, while poor biological read quality will result in                   
reads that cannot be aligned to the reference genome. Typically one expects Q30 scores above               
60-70% throughout the read with particularly high Q30 scores in the barcode read. Read              
alignment will become difficult when Q30 scores fall too far below this threshold. 
 
A further read-based experimental quality metric is generated during alignment. As we are             
mostly interested in gene expression rather than reads that cover intergenic regions, a high              
proportion of reads that are mapped to exonic regions is a further indicator of a successful                
experiment. While this proportion is also dependent on the biological system, proportions over             
40% are desirable as non-exonic reads often represent wasted sequencing effort. 
 
A direct quantification of wasted sequencing effort across the whole read processing pipeline             
represents a further experimental QC metric. During read processing, reads are assigned to             
barcodes, and barcodes that are assigned sufficient reads are thought to contain the             
transcriptome of at least one cell. Empty barcodes, and their associated reads, are filtered out               
before alignment. The proportion of reads that remain in the dataset after count matrices have               
been generated denotes the proportion of successful sequencing that was done. This metric             
can also be calculated at the cellular level. Depending on the experimental protocol, it may be                
known (or can be estimated) how many cells were input into the experiment. If approximately               
the same number of cells are captured in the count matrix, one can assume the experiment was                 
performed to a high standard. Naturally, some loss of cells is expected, and cell losses will                
depend on the experimental protocol. However, one can calibrate the expected loss of cells              
against replicate experiments to assess the quality of data from a particular sample. 

 



 
 

Appendix Supplementary Text 3: Permutation test for marker        
gene P-values 
In the “Cluster annotation” section we argued that p-values are likely to be inflated when               
calculating marker genes for clusters of cells. This argument is based on the dependency              
between the test covariate (clusters), and the tested variables (gene expression data). Clusters             
are defined based on gene expression data, which results in cellular gene expression profiles              
differing between clusters by design. Here, we show this p-value inflation in simulated data and               
suggest an alternative marker gene detection test. 
 
Using the splatter package ​(Zappia ​et al​, 2017)​, we simulated random single-cell gene             
expression data for a single cluster and without differentially expressed genes (1,000 cells,             
10,000 genes; code available on the project github). As we have determined the simulation              
parameters, we know that there is no substructure present in this data. Hence, any partition of                
this dataset would be performed based on fluctuation in gene expression due to noise and not                
an underlying signal. After basic pre-processing (filtering cells and genes, CPM normalization,            
log-transformation, and HVG selection for top 4000 genes), and best-practices louvain           
clustering at a resolution of 0.5, we obtained 2 clusters (Appendix Figure 3a). Finally, we               
performed marker gene detection for these clusters using a t-test. The analysis script for this               
simulation is available at https://github.com/theislab/single-cell-tutorial/. 
 
Although our clusters are only representations of the noise in the data, the distribution of               
p-values over all genes is skewed towards low p-values (Appendix Figure 3b). As p-values are               
uniformly distributed under null model conditions, the skewed p-value distribution shows us that             
our simulated data do not come from the null model. Yet, we have simulated conditions that can                 
be regarded as random for single-cell RNA-seq data. Thus, differential expression tests            
between cell clusters are biased towards low p-values even under random conditions. Indeed,             
we find 5 and 9 marker genes with FDR-adjusted p-values below the significance threshold of               
0.05 in this random dataset. As argued in the main text, the cause of this p-value inflation is the                   
clustering step, which should be taken into account in the test statistic. 
 
A simple method to take into account clustering into the differential testing null model is via a                 
permutation test. By permuting the expression values per gene in a real gene expression              
dataset, we can generate a random dataset while conserving the distribution of expression             
values for each gene. After clustering the permuted data, we can compute marker genes for               
each cluster. The p-values of these marker gene tests are p-values that arise from random data                
after clustering. We propose to use these random data p-values as a background distribution              
against which we can evaluate the real data p-values obtained from our clustered real data. To                
obtain a p-value for a marker gene conditional upon clustering we can calculate an empirical               
p-value defined by . Here, is the number of random data p-values lower than our   pemp =

m+1
M+1   m            

real data p-value, and  represents the total number of random p-values in the distribution.M  
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Appendix Figure 1​: Analysis of marker gene detection in clustered random data. Random data              
were simulated using the splatter package for one cluster, with dropout, and without             
differentially expressed genes. After Louvain community detection we detected 2 clusters, which            
are visualized in PCA-space in ​a. Marker gene detection was performed in scanpy using the               
t-test. The distribution of the p-values of all genes is shown in ​b. 
 
 
P-value distributions obtained from the random data will differ based on the size of the cluster                
and the rank of the p-value in the marker gene test. In order to account for these dependencies,                  
we suggest that the background p-value distribution for each empirical p-value calculation            
should be taken from a subset of the total random p-value distribution. Specifically, we propose               
that permuted data clusters are binned by cluster size, and within these size bins, only p-values                
with the same rank in their cluster are used. For example, to calculate a empirical p-value for the                  
top marker gene of a cluster of size 50, one should use the lowest p-value genes from all                  
clusters of size 40-60 in the random data. To obtain robust assessments of empirical p-values               
with this filtering, it will be necessary to generate several thousand permuted datasets, which              
may make this test scale poorly to large numbers of cells. A recently proposed marker gene                
detection tool that addresses the same issue may provide a more computationally efficient             
solution ​(Zhang ​et al​, 2018)​. 
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